|
In computer networking, Fast Ethernet is a collective term for a number of Ethernet standards that carry traffic at the nominal rate of 100 Mbit/s (the original Ethernet speed was 10 Mbit/s). Of the Fast Ethernet standards, 100BASE-TX is by far the most common. Fast Ethernet was introduced in 1995 as the IEEE 802.3u standard〔(IEEE 802.3u-1995 )〕 and remained the fastest version of Ethernet for three years before it was superseded by the Gigabit Ethernet.〔() The 802.3z Gigabit Ethernet Standard was published〕 ==General design== Fast Ethernet is an extension of the existing Ethernet standard. It runs on UTP data or optical fiber cable in a star wired bus topology, similar to 10BASE-T where all cables are attached to a hub. Fast Ethernet provides compatibility with existing 10BASE-T systems, enabling plug-and-play upgrades from 10BASE-T. Fast Ethernet is sometimes referred to as 100BASE-X, where "X" is a placeholder for the FX and TX variants. The standard specifies the use of CSMA/CD for media access control, although in practice all modern networks use Ethernet switches and operate in full-duplex mode. The "100" in the media type designation refers to the transmission speed of 100 Mbit/s, while the "BASE" refers to baseband signalling. The letter following the dash ("T" or "F") refers to the physical medium that carries the signal (twisted pair or fiber, respectively), while the last character ("X", "4", etc.) refers to the used encoding method. A Fast Ethernet adapter can be logically divided into a Media Access Controller (MAC), which deals with the higher-level issues of medium availability, and a Physical Layer Interface (PHY). The MAC may be linked to the PHY by a four-bit 25 MHz synchronous parallel interface known as a Media Independent Interface (MII), or by a two-bit 50 MHz variant called Reduced Media Independent Interface (RMII). Repeaters (hubs) are also allowed and connect to multiple PHYs for their different interfaces. The MII may (rarely) be an external connection but is usually a connection between ICs in a network adapter or even within a single IC. The specs are written based on the assumption that the interface between MAC and PHY will be a MII but they do not require it. The MII fixes the theoretical maximum data bit rate for all versions of Fast Ethernet to 100 Mbit/s. The data signaling rate actually observed on real networks is less than the theoretical maximum, due to the necessary header and trailer (addressing and error-detection bits) on every frame, the occasional "lost frame" due to noise, and time waiting after each sent frame for other devices on the network to finish transmitting. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Fast Ethernet」の詳細全文を読む スポンサード リンク
|